利用吸波材料衰减空腔谐振的分析

干琦 (南京邮电学院 江苏南京 210003)

中国分类号: TN629.1 文献标识码: A

微波部件中的许多电路板都会采用某种形式的外罩进行保 护,通常这种外罩用金属制成,或采用金属涂层,以提供某种程度 的电磁隔离或物理保护。随着电路工作频率不断提高, 电路板空 腔不断减小,空腔谐振逐渐成为微波电路设计中一个非常普遍的 问题,而且这种电压驻波比对电路运行产生的不利影响,往往难 以事先预料。此时通常需要重新调整电路、否则可能会使电路元 件根本无法正常工作。如果我们利用吸波材料的低反射率特性, 在腔体内帖覆吸波材料层,能够大大减小空腔谐振的可能性。

1.空腔谐振的概念

1.1 空腔谐振的形成

基础微波工程理论认为,任何外壳都会有产生振荡的特定谐 振频率。在空腔尺寸大致等于空腔中自由空间波长一半的倍数 时,就会产生振荡。高频率或大空腔存在多种能产生振荡的谐振 频率,这增大了设备辐射额外信号的可能性,这些额外的信号会 导致空腔产生谐振。空腔中的驻波会使空腔的阻抗发生变化。在 腔壁(假设是金属或其它导电墙壁)处,横电场为零,从而阻抗 也为零,而在离墙壁四分之一波长处,阻抗变为无穷大(假设无 损失)。根据"电压驻波比"的波峰位置与不存在"电压驻波比" 的位置,"电压驻波比"会影响设备的输入或输出阻抗

矩形腔是微波电路中最常用的外罩模式,如果最大的空腔尺 寸大于或者等于1/2的自由空间波长值,这些模式的微波就能够 存在于矩形空腔内,低于这个截止频率则不会产生空腔谐振现 象。对于一个长、宽、高分别为a、b、c的矩形空腔而言(a<b < c), 假设当中充满了各向同性的材料, 则谐振频率是,

$$(f)_{map} = \frac{\sqrt{\frac{(m)^2 + (\frac{n}{b})^2 + (\frac{p}{b})^2}{c}}}{\frac{2}{c}\sqrt{|g_{II}|}}$$
(1)

式中, ϵ 是材料的介电常数, μ 是磁导率。

在这种结构中,TE011模式是基本模式,或者说它是一个给定 空腔中的最低谐振频率。这个基本模式的频率与材料的参数 (ϵ, μ) 成反比。如果工作频率低于空腔的截止频率,则不存在 空腔谐振问题。

根据电磁场方程的解,TE011 模式的各个电磁场分量分别

$$E_{\tau} = E_0 \sin(\frac{\pi y}{b}) \sin(\frac{\pi z}{c})$$

$$E_y = \frac{jbE_0}{\eta\sqrt{b^2 + c^2}} \sin(\frac{\pi y}{b}) \cos(\frac{\pi z}{c})$$

$$H_z = -\frac{jcE_0}{\eta\sqrt{b^2 + c^2}} \cos(\frac{\pi y}{c}) \sin(\frac{\pi z}{c})$$
(3)

$$H_{z} = -\frac{fcB_{0}}{\eta\sqrt{b^{2} + c^{2}}}\cos(\frac{\pi y}{b})\sin(\frac{\pi z}{c})$$
 (4)

$$\mathbf{H} = \mathbf{I} = \sqrt{\frac{\mu}{E}} \tag{5}$$

在方程 '(2)-(4)中,x、y、z 轴分别沿空腔尺寸最短、 次短、最长的方向定位、并将E。定义为标准电场强度。需要指 出的是, 驻波的电场和磁场分量之间的相位差是90度。因此, 空 腔内的阻抗变化将会非常强烈,从而对电路造成许多未知的影响 (通常是不希望产生的),比如有源器件的工作状态会变得不稳 定。磁场分量一般在空腔壁处最强,因此会造成屏蔽功能在谐振 频率点减弱。

1.2 使用吸波材料解决空腔谐振问题

空腔谐振问题的任何解决办法的目标都是降低关键触点的电 压驻波比(VSWR)。这些触点可以是某个在用设备、微波滤波器 或与另一电路元件相连的简易导线的输入点或输出点。如果可以 减小空腔尺寸,就可能使截止频率提高,从而不会在电路中引起 任何问题。但是,在不影响电路性能的前提下增大空腔尺寸通常 是不可行的。

在空腔中使用微波吸收材料来衰减空腔谐振是一个可能有效 的方法。吸波材料(尤其是磁性吸波材料)具有较高的介电 常数和磁导率以及较大的损耗因子。介电常数和磁导率的基本 定义就是材料储存电场和磁场的能力。在空腔内放置微波吸收 材料时,根据电磁场方程的解,我们可以发现能量主要驻留在 具有较高介电常数 / 磁导率的材料中。这就减少了包含电路的 空腔内未充实区域的能量分布,从而减少阻抗变化以及阻抗变 化对电路的影响。

1.3 吸波材料的选择

宽带吸收材料必须具备足够的衰减能力, 以便将来自背面 反射的能量在离开材料时降到极低水平。要获得这样的衰减能 力、就要求吸收材料相对波长而言必须具有适当的厚度。尽管 使用衰减系数更高、介电常数更大的材料可能在更小的厚度上 获得足够的衰减性能,但是,具有此类性质的介质其阻抗将与 自由空间的阻抗相差甚远,将产生更大的前面反射。这样的前 面反射在有耗介质中是很明显的,而且可能会严重降低吸收材 料的性能。 因此,还要利用渐变阻抗的概念。即从入射表面 处的自由空间逐渐变化到背面阻抗更小、损耗更大的介质。入射 能量在进入材料时"看到"的是自由空间,并在穿越损耗系数渐 增的有耗介质的过程中被衰减掉。

我们选择用来减弱空腔谐振的吸波材料要求它们在一个较宽 的频带内表现出较强的磁性与较高的介电损耗。对于衰减空腔谐 振、最有效的吸波材料是具有磁性的吸波材料,而且材料参数 (ε, μ) 越高,在空腔谐振吸收方面的性能就越好。

2. 微波在介质层中的传播理论

微波人射到空气和介质层的分界面上时,会产生反射的现 象,对于用作吸波材料的介质,我们希望这种边界的反射尽可能 的小。在空腔内,微波可能从任意方向上入射到介质层表面,我 们将其按矢量分解为水平极化波 p和垂直极化波 s(任何极化状态 的波都可以用电场互相垂直的分量及其相对相位来描述)。反射 系数分别由(6)式和(7)式计算得到。

$$\Gamma_{r} = \frac{R_{st0}}{R_{st0}^{+}} = \frac{\eta_{2p} - \eta_{kp}}{\eta_{2p} + \eta_{kp}}$$

$$\Gamma_{r} = \frac{R_{st0}}{R_{st0}} = \frac{\eta_{2p} - \eta_{kk}}{\eta_{2p} + \eta_{kk}}$$
(6)

上式中,7代表波阻抗,通常是复数,可以由磁导率和电容率求 得,下标x,y分别是电场E在空气中的矢量方向,下标1、2分 别表示空气和吸波材料,E 表示反射波,E+表示入射波。

微波在投射到介质层中继续传播,是一个不断衰减的过程。 材料的电容率和磁导率,以及厚度 d 将最终决定衰减的幅度。

基于一步状态转移矩阵的 Freeman 链码压缩

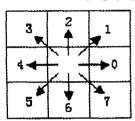
南京 210096) (东南大学无线电工程系

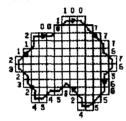
搞 要:本文阐述了在 Markov 链一步状态转移矩阵的基础上重建 Freeman 链码序列模型,给出了一种更合理的 Freeman 链码数据 压缩算法,它在压缩较复杂的二维线条图像即较长链码的时候,具有比直接 Huffman 编码更优越的性能。

关键词:一步状态转移矩阵 Huffman 编码 数据压缩

中图分类号:TN919.81

文献标示码: A


Freeman 链码在表示二维线条图像(如二值图像的轮廓)方面 表现出色,它能有效地压缩图像的数据量,所以该技术一直被广泛 地应用[1,2]。


1.基本概念

1.1Freeman 辩码

Freeman 于 1961 年最早提出了用链码来表现平面线条图像 的方法[4]。根据线条的不同走势方向,分别用{0,1,……,7}八 个标志来表示,如图1所示。这样任何一个连续的平面线条图 像都可以用一串由{0,1,……,7}中的元素组成的链码来近似 描述。如果按顺时针方向绕行,以点 * 为起始点,那么可得到 如图 2 的轮廓线的 Freeman 链码。

1.2 Markov 链一步状态转移矩阵

12: Pres 图1:八方向Freenan链状编码规则(10077787858855423545423232112001)

Freeman 链码可认为是一离散时间的 Markov 链。对于一 个 Markov 链, 如果在时刻 m时状态为i的条件下,到时刻n状态 为j的条件概率记作:

 $\pi_{i}(m,n) = P\{X_{n} = j \mid X_{m} = i\}$ 那么称 $\pi_{i}(m,n)$ 为 Markov 链 X_{n} 的转移概率,称矩阵:

 $\prod (m,n) \approx (\pi_n(m,n))_{n \in \mathbb{N}}$ $\pi_{\Omega}(m,n) = \pi_{\Omega}(m,n)$ $\pi_{21}(m,n) = \pi_{21}(m,n)$... $\pi_{2H}(m,n)$ (式1) $\{\pi_{M}(m,n) \mid \pi_{M2}(m,n) \mid ... \mid \pi_{Mr}(m,n) \}$

为从时刻 m 到时刻 n 的状态转移矩阵。如果 n=m+1, 那 么该矩阵即为一步状态转移矩阵。根据以上的定义,可计算出如 图 2 所示的 Freeman 链码的一步状态转移矩阵为:

其中每个矩阵元素除以所在行的和即为对应的转移概率。如 第一行的第一列表示从 $0 \to 0$ 的概率为2/(2+1+1) = 0.5。

1.3 数据压缩编码

数据压缩编码(如图 3 所示)是由序列模型建立和熵编码两部 分构成的, 为了尽可能地增大数据压缩率, 建立的序列模型要尽 可能使其熵 Hr. 变小,而熵编码部分用平均码长 Y 尽可能接近 Hr. 的代码对模型序列进行编码。

Huffman 编码[5]是熵编码的一种,其主要思想是依据事件发 生的概率编码,发生概率高的事件分配的码长要大于发生概率低 的。对于样本事件发生的概率相差悬殊的问题,这种编码算法能 很有效地压缩数据量;而如果样本事件发生的概率相差无几,那么 Huffman 编码几乎没有什么优越性。图 3:

对一幅平面线条图像进行 Freeman 编码, 经常会出现各码 字的概率相差不多的情形,如果直接用 Huffman 编码压缩数据 (以下简称 Hcoding), 所能达到的数据压缩率会很有限。下面介 绍的算法能有效地改善这个问题。

2、基于 Markov 链一步状态转移矩阵数据压缩编码算法 (Mcodina)

2.1 预处理 Freeman 链码

波数 k 是材料的特性函数,可能是复数值,由下式表示:

 $k = k_0 \sqrt{\mu_R \varepsilon_R}$

(8)

 $j\mathbf{k} = \alpha + j\beta$

(9)由波动方程可以得到电场的传波形式:

 $E_x = E_{x0}e^{-jkx} = E_{x0}e^{-\alpha x}e^{-j\beta x}$

(10)

如果α是正数,电场将会随着方向 2 的深入而衰减。

3. 应用吸波材料的理论效果

磁化硅树脂吸收材料(FGM)和高损失绝缘硅树脂橡胶 (MCS) 是两种具有高电容率和高磁导率的磁性介质材料。材料 能被平整的切割,可以用作吸波材料。在这里,我们利用两种材 料的特性衰减空腔谐振。

实际上,我们希望能够得到反射率低而吸收效果又好的材

料,因此可以利用渐变阻抗的概念,将两种材料平行粘接。微 波由空气入射到 FGM 材料中,再进入 MCS 材料,最后到达 金属外罩。微波在FGM 材料与空气边界上有较低的反射率, 而在 FGM 材料与 MCS 材料的边界处,因为两种材料阻抗的跃 变远远小于空气阻抗与 MCS 材料阻抗的差距,反射率也大大降 低了。MCS 材料能够更好吸收微波能量,以保证当微波到达 金属外罩时,已经有足够的衰减。

因此,将吸波材料帖覆在金属腔内表面,可以解决空腔谐 振的问题,并且相对于重新设计修改电路而言,更加快捷。

参考文献

[1] Harrington, Time Harmonic Electromagnetic Fields, McGraw-Hill, 1961

[2]Paul Dixon, 空腔谐振的衰减, 2004